skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Majluf, Francesca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ambient ozone (O3) concentrations in Southeast Michigan (SEMI) can exceed the U.S. National Ambient Air Quality Standard. Despite past efforts to measure O3precursors and elucidate reaction mechanisms, changing emission patterns and atmospheric composition in SEMI warrant new measurements and updated mechanisms to understand the causes of observed O3exceedances. In this study, we examine the chemical drivers of O3exceedances in SEMI, based on the Phase I MOOSE (Michigan‐Ontario Ozone Source Experiment) field study performed during May to June 2021. A zero‐dimensional (0‐D) box model is constrained with measurement data of meteorology and trace gas concentrations. Box model sensitivity simulations suggest that the formaldehyde to nitrogen dioxide ratio (HCHO/NO2) for the transition between the volatile organic compounds (VOCs)‐ and nitrogen oxides (NOx)‐limited O3production regimes is 3.0 ± 0.3 in SEMI. The midday (12:00–16:00) averaged HCHO/NO2ratio during the MOOSE Phase I study is 1.62 ± 1.03, suggesting that O3production in SEMI is limited by VOC emissions. This finding implies that imposing stricter regulations on VOC emissions should be prioritized for the SEMI O3nonattainment area. This study, through its use of ground‐based HCHO/NO2ratios and box modeling to assess O3‐VOC‐NOxsensitivities, has significant implications for air quality policy and the design of effective O3pollution control strategies, especially in O3nonattainment areas. 
    more » « less
  2. Volatile chemical products (VCPs) and other non-combustion-related sourceshave become important for urban air quality, and bottom-up calculationsreport emissions of a variety of functionalized compounds that remainunderstudied and uncertain in emissions estimates. Using a new instrumentalconfiguration, we present online measurements of oxygenated organiccompounds in a US megacity over a 10 d wintertime sampling period, whenbiogenic sources and photochemistry were less active. Measurements wereconducted at a rooftop observatory in upper Manhattan, New York City, USAusing a Vocus chemical ionization time-of-flight mass spectrometer, withammonium (NH4+) as the reagent ion operating at 1 Hz. The range ofobservations spanned volatile, intermediate-volatility, and semi-volatileorganic compounds, with targeted analyses of ∼150 ions, whoselikely assignments included a range of functionalized compound classes suchas glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters,ethanolamines, and ketones that are found in various consumer, commercial,and industrial products. Their concentrations varied as a function of winddirection, with enhancements over the highly populated areas of the Bronx,Manhattan, and parts of New Jersey, and included abundant concentrations ofacetates, acrylates, ethylene glycol, and other commonly used oxygenatedcompounds. The results provide top-down constraints on wintertime emissionsof these oxygenated and functionalized compounds, with ratios to commonanthropogenic marker compounds and comparisons of their relative abundancesto two regionally resolved emissions inventories used in urban air qualitymodels. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract. Organic aerosol (OA) emissions from biomass burning havebeen the subject of intense research in recent years, involving acombination of field campaigns and laboratory studies. These efforts haveaimed at improving our limited understanding of the diverse processes andpathways involved in the atmospheric processing and evolution of OAproperties, culminating in their accurate parameterizations in climate andchemical transport models. To bring closure between laboratory and fieldstudies, wildfire plumes in the western United States were sampled andcharacterized for their chemical and optical properties during theground-based segment of the 2019 Fire Influence on Regional to GlobalEnvironments and Air Quality (FIREX-AQ) field campaign. Using acustom-developed multiwavelength integrated photoacoustic-nephelometerspectrometer in conjunction with a suite of instruments, including anoxidation flow reactor equipped to generate hydroxyl (OH⚫) ornitrate (NO3⚫) radicals to mimic daytime or nighttimeoxidative aging processes, we investigated the effects of multipleequivalent hours of OH⚫ or NO3⚫ exposure onthe chemical composition and mass absorption cross-sections (MAC(λ)) at 488 and 561 nm of OA emitted from wildfires in Arizona and Oregon. Wefound that OH⚫ exposure induced a slight initial increase inabsorption corresponding to short timescales; however, at longer timescales, the wavelength-dependent MAC(λ) decreased by a factor of0.72 ± 0.08, consistent with previous laboratory studies and reportsof photobleaching. On the other hand, NO3⚫ exposure increasedMAC(λ) by a factor of up to 1.69 ± 0.38. We also noted somesensitivity of aerosol aging to different fire conditions between Arizonaand Oregon. The MAC(λ) enhancement following NO3⚫ exposure was found to correlate with an enhancement in CHO1N andCHOgt1N ion families measured by an Aerodyne aerosol mass spectrometer. 
    more » « less
  5. null (Ed.)
  6. Abstract Emission factors (EFs) are crucial in understanding the effects of wildfire emissions on air quality. We examined the variability of EFs of three wildfires (Nethker, Castle, and 204 Cow) during the 2019 Western US wildfire season using the Aerodyne Mobile Laboratory (AML) and compared them to previous studies. The AML sampling captured the high degree of variability present in wildfires, and we report results for a range of combustion conditions that is more extensive than previous field and laboratory studies. For instance, we captured emissions from freshly started flaming fuels and we report rare EF measurements at very high modified combustion efficiencies (MCEs); MCEs >0.9. Differences in emissions between AML‐observed wildfires were attributed to burning state/MCE rather than fuel type. A comparison of EFs versus MCE was made and linear fits were compared to previous observations to reveal important differences that incorporate these high MCEs. For some species, there remains an EF dependence on MCE at these high values, while others reach a minimum value and exhibit either no or a weak dependence above it. EF differences were found for many of the studied compounds when comparing ground‐based and airborne observations, with generally greater airborne EFs possibly due to photochemical oxidation. The largest differences were from monoterpenes and acetaldehyde. Comparisons were made between AML‐observed wildfires, aircraft observations, and the values in literature for EFs and emission ratios, with mixed agreement due to the high degree of variability caused by differences in MCE. Differences in MCE drove the diurnal EF differences. 
    more » « less
  7. Abstract. Oxidation flow reactors (OFRs) are an emerging tool for studying the formation and oxidative aging of organic aerosols and other applications.The majority of OFR studies to date have involved the generation of the hydroxyl radical (OH) to mimic daytime oxidative aging processes.In contrast, the use of the nitrate radical (NO3) in modern OFRs to mimic nighttime oxidative aging processes has been limited due to the complexity of conventional techniques that are used to generate NO3.Here, we present a new method that uses a laminar flow reactor (LFR) to continuously generate dinitrogen pentoxide (N2O5) in the gas phase at room temperature from the NO2 + O3 and NO2 + NO3 reactions.The N2O5 is then injected into a dark Potential Aerosol Mass (PAM) OFR and decomposes to generate NO3; hereafter, this method is referred to as “OFR-iN2O5” (where “i” stands for “injected”).To assess the applicability of the OFR-iN2O5 method towards different chemical systems, we present experimental and model characterization of the integrated NO3 exposure, NO3:O3, NO2:NO3, and NO2:O2 as a function of LFR and OFR conditions.These parameters were used to investigate the fate of representative organic peroxy radicals (RO2) and aromatic alkyl radicals generated from volatile organic compound (VOC) + NO3 reactions, and VOCs that are reactive towards both O3 and NO3.Finally, we demonstrate the OFR-iN2O5 method by generating and characterizing secondary organic aerosol from the β-pinene + NO3 reaction. 
    more » « less